Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism


Formation of compression (CW) and opposite wood (OW) in branches and bent trunks is an adaptive feature of conifer trees in response to various displacement forces, such as gravity, wind, snow and artificial bending. Several previous studies have characterized tracheids, wood and gene transcription in artificially or naturally bent conifer trunks.

These studies have provided molecular basis of reaction wood formation in response to bending forces and gravity stimulus. However, little is known about reaction wood formation and gene transcription in conifer branches under gravity stress.

In this study SilviScan(R) technology was used to characterize tracheid and wood traits in radiate pine (Pinus radiata D. Don) branches and genes differentially transcribed in CW and OW were investigated using cDNA microarrays.

Results: CW drastically differed from OW in tracheids and wood traits with increased growth, thicker tracheid walls, larger microfibril angle (MFA), higher density and lower stiffness.

However, CW and OW tracheids had similar diameters in either radial or tangential direction. Thus, gravity stress largely influenced wood growth, secondary wall deposition, cellulose microfibril orientation and wood properties, but had little impact on primary wall expansion.

Microarray gene transcription revealed about 29% of the xylem transcriptomes were significantly altered in CW and OW sampled in both spring and autumn, providing molecular evidence for the drastic variation in tracheid and wood traits. Genes involved in cell division, cellulose biosynthesis, lignin deposition, and microtubules were mostly up-regulated in CW, conferring its greater growth, thicker tracheid walls, higher density, larger MFA and lower stiffness.

However, genes with roles in cell expansion and primary wall formation were differentially transcribed in CW and OW, respectively, implicating their similar diameters of tracheid walls and different tracheid lengths. Interestingly, many genes related to hormone and calcium signalling as well as various environmental stresses were exclusively up-regulated in CW, providing important clues for earlier molecular signatures of reaction wood formation under gravity stimulus.

Conclusions: The first comprehensive investigation of tracheid characteristics, wood properties and gene transcription in branches of a conifer species revealed more accurate and new insights into reaction wood formation in response to gravity stress.

The identified differentially transcribed genes with diverse functions conferred or implicated drastic CW and OW variation observed in radiata pine branches. These genes are excellent candidates for further researches on the molecular mechanisms of reaction wood formation with a view to plant gravitropism.

Author: Xinguo LiXiaohui YangHarry X Wu
Credits/Source: BMC Genomics 2013, 14:768



Published on: 2013-11-09



News Provider: 7thSpace Interactive

Copyright by the authors listed above - made available via BioMedCentral (Open Access). Please make sure to read our disclaimer prior to contacting 7thSpace Interactive. To contact our editors, visit our online helpdesk. If you wish submit your own press release, click here.

Social Bookmarking
RETWEET This! | Digg this! | Post to del.icio.us | Post to Furl | Add to Netscape | Add to Yahoo! | Rojo



Comments

There are no comments available. Be the first to write a comment.


You need to enable Javascript to post a comment.


Custom Search

Username
Password










© 2014 7thSpace Interactive
All Rights Reserved - About | Disclaimer | Helpdesk
There are currently 30509 people browsing 7thSpace (S2)