On a unified framework for linear nuisance parameters


Estimation problems in the presence of deterministic linear nuisance parameters arise in a variety of fields. To cope with those, three common methods are widely considered: (1) jointly estimating the parameters of interest and the nuisance parameters; (2) projecting out the nuisance parameters; (3) selecting a reference and then taking differences between the reference and the observations, which we will refer to as “differential signal processing.”A lot of literature has been devoted to these methods, yet all follow separate paths.Based on a unified framework, we analytically explore the relations between these three methods, where we particularly focus on the third one and introduce a general differential approach to cope with multiple distinct nuisance parameters.

After a proper whitening procedure, the corresponding best linear unbiased estimators (BLUEs) are shown to be all equivalent to each other. Accordingly, we unveil some surprising facts, which are in contrast to what is commonly considered in literature, e.g ., the reference choice is actually not important for the differencing process.

Since this paper formulates the problem in a general manner, one may specialize our conclusions to any particular application. Some localization examples are also presented in this paper to verify our conclusions.



Published on: 2017-01-08

Made available by EUPB via SpringerOpen / BioMedCentral. Please make sure to read our disclaimer prior to contacting 7thSpace Interactive. To contact our editors, visit our online helpdesk. To submit your press release click here. The full research and author details are available at http://asp.eurasipjournals.com/content/2017/1/4

Discussions




Custom Search



Username
Password










© 2017 7thSpace Interactive
All Rights Reserved - About | Disclaimer | Helpdesk