Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography

Residual hydrogen (H 2 ) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation.

Increased insight into the behavior of residual H 2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H 2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography.

The results indicate that the total residual hydrogen concentration, H TOT , in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important.

The pulse energy has the greatest influence on the quantity H TOT , which is consistently less than 0.1 at.% at a value of 80 pJ.

Published on: 2017-02-23

Made available by EUPB via SpringerOpen / BioMedCentral. Please make sure to read our disclaimer prior to contacting 7thSpace Interactive. To contact our editors, visit our online helpdesk. To submit your press release click here. The full research and author details are available at


Custom Search


© 2018 7thSpace Interactive
All Rights Reserved - About | Disclaimer | Helpdesk